SPDT SWITCH GaAs MMIC

■ GENERAL DESCRIPTION

NJG1600KB2 is a GaAs SPDT switch IC that features small-sized package and low insertion loss, and ideally suited for T/R switch of digital cordless telephone or other digital wireless systems.

This switch is operated in the wide frequency range from 100 MHz to 2.5 GHz at low operating voltage from +2.5 V . The ultra small \& ultra thin FLP6-B2 package is adopted.

PACKAGE OUTLINE

NJG1600KB2

■ FEATURES

-Low control voltage

- Low insertion loss
-High isolation
- Pin at 1 dB
compression point
OLow control current
-Ultra small \& ultra thin package

PIN CONFIGURATION

■ TRUTH TABLE

$$
" \mathrm{H}^{\prime \prime}=\mathrm{V}_{\mathrm{CTL}(\mathrm{H})}, " \mathrm{~L} "=\mathrm{V}_{\mathrm{CTL}(\mathrm{~L})}
$$

$\mathrm{V}_{\text {CTL1 }}$	H	L
$\mathrm{V}_{\text {CTL2 }}$	L	H
$\mathrm{PC}-\mathrm{P} 1$	OFF	ON
PC - P2	ON	OFF

NJG1600KB2

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	CONDITIONS	CONDITIONS	UNITS
RF Input Power	$\mathrm{P}_{\text {IN }}$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTL}}=0 \mathrm{~V} / 2.7 \mathrm{~V}$	27	dBm
Supply Voltage	V_{DD}	VDD terminal	7.5	V
Control Voltage	$\mathrm{V}_{\mathrm{CTL}}$	VCTL terminal	7.5	V
Operating Temp.	$\mathrm{T}_{\text {opr }}$		$-40 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage Temp.	$\mathrm{T}_{\text {stg }}$		$-55 \sim+150$	${ }^{\circ} \mathrm{C}$

■ ELECTRICAL CHARACTERISTICS

(General conditions: $\mathrm{V}_{\text {CTL }(\mathrm{L})}=0 \mathrm{~V}, \mathrm{~V}_{\text {CTL }(H)}=2.7 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{I}}=50 \Omega, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)						
PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Current	I_{DD}	$\mathrm{f}=2.5 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=22 \mathrm{dBm}$	-	120	-	uA
Control Voltage (LOW)	$\mathrm{V}_{\text {CTL (L) }}$		0	-	0.8	V
Control Voltage (HIGH)	$\mathrm{V}_{\text {CTL (H) }}$		2.0	2.7	V_{DD}	V
Control Current	$\mathrm{I}_{\text {cti }}$	$\mathrm{f}=2.5 \mathrm{GHz}, \mathrm{P}_{\text {In }}=22 \mathrm{dBm}$	-	15	30	uA
Insertion Loss 1	LOSS1	$\mathrm{f}=1.0 \mathrm{GHz}, \mathrm{P}_{\text {In }}=22 \mathrm{dBm}$	-	0.3	0.4	dB
Insertion Loss 2	LOSS2	$\mathrm{f}=2.0 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=22 \mathrm{dBm}$	-	0.35	0.45	dB
Insertion Loss 3	LOSS3	$\mathrm{f}=2.5 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=22 \mathrm{dBm}$	-	0.4	0.5	
Isolation 1	ISL1	$\mathrm{f}=1.0 \mathrm{GHz}, \mathrm{P}_{\text {In }}=22 \mathrm{dBm}$	22	25	-	dB
Isolation 2	ISL2	$\mathrm{f}=2.0 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=22 \mathrm{dBm}$	15	18	-	dB
Isolation 3	ISL2	$\mathrm{f}=2.5 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=22 \mathrm{dBm}$	14	17	-	
Pin at 1dB Compression Point	$\mathrm{P}_{-1 \mathrm{~dB}}$	$\mathrm{f}=2.5 \mathrm{GHz}$	24	27	-	dBm
VSWR	VSWR	$\mathrm{f}=0.1 \sim 2.5 \mathrm{GHz}$, ON state	-	1.4	1.6	
Switching time	$\mathrm{T}_{\text {sw }}$	$\mathrm{f}=0.1 \sim 2.5 \mathrm{GHz}$	-	100	-	ns

TERMINAL INFORMATION

No.	SYMBOL	DESCRIPTION
1	P1	RF port. This port is connected with PC port by controlling $4^{\text {th }}$ pin $\left(\mathrm{V}_{\text {CTL(H) }}\right)$ to $2.5 \sim 6.5 \mathrm{~V}$ and $6^{\text {th }} \operatorname{pin}\left(\mathrm{V}_{\text {CTLLLL }}\right)$ to $-0.2 \sim+0.2 \mathrm{~V}$. An external capacitor is required to block the DC bias voltage of internal circuit. ($50 \sim 100 \mathrm{MHz}: 0.01 \mathrm{uF}$, $0.1 \sim 0.5 \mathrm{GHz}: 1000 \mathrm{pF}, 0.5 \sim 2.5 \mathrm{GHz}: 56 \mathrm{pF}$)
2	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
3	P2	RF port. This port is connected with PC port by controlling $6^{\text {th }}$ pin $\left(\mathrm{V}_{\text {CTL }(H)}\right)$ to $2.5 \sim 6.5 \mathrm{~V}$ and $4^{\text {th }} \operatorname{pin}\left(\mathrm{V}_{\text {CTLLLL }}\right)$ to $-0.2 \sim+0.2 \mathrm{~V}$. An external capacitor is required to block the DC bias voltage of internal circuit. ($50 \sim 100 \mathrm{MHz}: 0.01 \mathrm{uF}$, $0.1 \sim 0.5 \mathrm{GHz}: 1000 \mathrm{pF}, 0.5 \sim 2.5 \mathrm{GHz}: 56 \mathrm{pF}$)
4	VCTL2	Control port 2. The voltage of this port controls PC to P1 state. The 'ON' and 'OFF' state is toggled by controlling voltage of this terminal such as high-state ($2.5 \sim 6.5 \mathrm{~V}$) or low-state $(-0.2 \sim+0.2 \mathrm{~V})$. The voltage of $6^{\text {th }}$ pin have to be set to opposite state. The bypass capacitor has to be chosen to reduce switching time delay from $10 \mathrm{pF} \sim 1000 \mathrm{pF}$ range.
5	PC	Common RF port. In order to block the DC bias voltage of internal circuit, an external capacitor is required. ($50 \sim 100 \mathrm{MHz}: 0.01 \mathrm{uF}, 0.1 \sim 0.5 \mathrm{GHz}: 1000 \mathrm{pF}$, $0.5 \sim 2.5 \mathrm{GHz}: 56 \mathrm{pF})$
6	VCTL1	Control port 1. The voltage of this port controls PC to P2 state. The 'ON' and 'OFF' state is toggled by controlling voltage of this terminal such as high-state $(2.5 \sim 6.5 \mathrm{~V})$ or low-state $(-0.2 \sim+0.2 \mathrm{~V})$. The voltage of $4^{\text {th }}$ pin have to be set to opposite state. The bypass capacitor has to be chosen to reduce switching time delay from $10 \mathrm{pF} \sim 1000 \mathrm{pF}$ range.

■APPLICATION CIRCUIT

Parts List

Parts ID	Constant	Notes
C1~C3	56 pF	GRM36 MURATA
$\mathrm{C} 4, \mathrm{C} 5$	10 pF	GRM36 MURATA
R1	$560 \mathrm{~K} \Omega$	1608 Size

■RECOMMENDED PCB DESIGN

(TOP VIEW)

PCB SIZE=19.4x14.0mm
PCB: FR-4, $\mathrm{t}=0.2 \mathrm{~mm}$
CAPACITOR: size 1005
STRIPLINE WIDTH $=0.4 \mathrm{~mm}$

PRECAUTIONS

[1] The DC blocking capacitors have to be placed at RF terminal of P1, P2 and PC.
[2] To reduce stlipline influence on RF characteristics, please locate bypass capacitors (C4, C5) close to each terminals.
[3] To avoid degradation of isolation or high power characteristics, please layout ground pattern right under this IC.

Cautions on using this product

This product contains Gallium-Arsenide (GaAs) which is a harmful material.

- Do NOT eat or put into mouth.
- Do NOT dispose in fire or break up this product.
- Do NOT chemically make gas or powder with this product.
- To waste this product, please obey the relating law of your country.

